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Validation of technologies /"

for 10S and ADR missions = <

» Robotic systems developed for IOS and ADR missions should
be tested in simulated microgravity conditions.

» Various approaches are used to simulate microgravity:
tests based on industrial manipulators, suspension systems,
parabolic flights, drop towers, and air-bearing simulators.

» Air-bearing simulators emulate the dynamic behaviour of the
free-floating satellite-manipulator system, offering low
disturbances and low operating costs.
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Planar air-bearing microgravity
simulator at CBK PAN - -

Simulator is based on a flat and
precisely levelled granite plate:
2mx3m.

The mock-up of the satellite-
manipulator system is mounted
on planar aerostatic air-bearings
and placed on the test-bed
surface.

Microgravity conditions are
simulated in two dimensions.

Scaling laws allow to perform
experiments with scaled-down
systems.




@D The beginning...

L.
» Planar air-bearing microgravity simulator at CBK PAN is in
operation since 2012.

» First results presented at the ASTRA 2013 conference:
Rybus T., et al., New Planar Air-bearing Microgravity Simulator
for Verification of Space Robotics Numerical Simulations and
Control Algorithmes. 9
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Applications of the test-bed f’ﬁ\

» Validation of manipulator trajectory
planning and control algorithms.

» Simultaneous control of a free-flying
chaser satellite and its manipulator.
Research on flexible-joint manipulators.
ESA Projects: ,,e.Deorbit Phase B1” and I
,Sample Acquisition Means for the

Phootprint Lander: Experiments and
first Realisation” (SAMPLER).




» 2015-2016: ,Development and
validation of the laboratory model
of a space robot equipped with
resistojet thrusters” (NCBIR).

2017 —2019: ,Mobility of a
nonholonomlc space robot

obstacles” (NCN).

2020 —-2022: ,Development
and validation of a control

system for space manipulator"
(NCBIR).




Elements of the air-bearing 7\
microgravity simulator (
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Chaser satellite mock-up ,




Chaser satellite
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Manipulator with Modular
Gripper

casing
side tentacle unit

hardstops

DC gearmotor central tentacle arm
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Target satellite mock-up
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Validation of new elements 7\
of the test-bed (. <

» New elements of the test-bed have been thoroughly tested to
confirm that they meet all design requirements.

» The control system uses cold-gas thrusters to accelerate the
mock-up to the desired angular velocity and keep constant
position of the mock-up’s Centre of Mass (CoM).

» Gains of controllers responsible for the control of the target
satellite mock-up's cold-gas thrusters were tuned.
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Tracking optimal
collision-free trajectories

» Demonstration of optimal collision-free manipulator trajectory
planning using spline-based trajectories.
» Chaseris in a free-floating mode.

» Trajectory results in the desired position and orientation of the
end-effector and the desired orientation of the chaser.
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@Q Tracking optimal /‘\
¥ collision-free trajectories 7 .
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Capture operation

The target satellite is rotating with the angular velocity

of 3 deg/s at the moment of grasping.

The end-effector follows a pre-planned trajectory and
approached the LAR in a straight line with respect to the target.

Control system based on the Dynamic Jacobian is used to ensure
accurate end-effector trajectory tracking.
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Summary 7\

» Testing facilities that allow the simulation of microgravity
conditions play a crucial role in validation of technologies
developed for I0OS and ADR missions.

» Over twelve years of continuous operation, the planar
air-bearing microgravity simulator at CBK PAN has proven its
reliability, versatility, and potential to obtain high-quality results.

» Several major upgrades of the test-bed expanded its capabilities
and opened up new fields of research.

» Two new elements were recently added: the Modular Gripper
and the mock-up of the target satellite.

» It is possible to simulate the entire operation of capturing a
rotating target object. This allows to perform experimental
verification of trajectory planning and control algorithms
dedicated for the in-orbit capture operation.
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